krivkový integrál vektorovej funkcie
Z STD
Odporúčaný termín [?]
Oblasť: | fyzikálne vedy |
Definícia: | integrál vyjadrený zvyčajne v tvare $\int_{r_1}^{r_2} F \cdot \mathrm{d}r = \int_{r_1}^{r_2}(F_x \mathrm{d}x + F_y \mathrm{d}y + F_z \mathrm{d}z)$, kde $F(x, y, z)$ je vektorová funkcia troch premenných a $\mathrm{d} r$ diferenciál polohového vektora |
Zdroj: | Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009. |
Poznámka: | Po krivke sa integruje od bodu s polohovým vektorom $r_1$ po bod s polohovým vektorom $r_2$. |