Termín:limita funkcie v nevlastnom bode: Rozdiel medzi revíziami

Z STD
Prejsť na: navigácia, hľadanie
d (importovaná 1 revízia: Import termínov matematiky bez veľkých rovníc (4))
d
 
Riadok 1: Riadok 1:
 
{{Term
 
{{Term
 
|Name=limita funkcie v nevlastnom bode
 
|Name=limita funkcie v nevlastnom bode
|Definition=Funkcia y=f(x) má v bode a=± limitu rovnajúcu sa \\ $b \in \emph{R}(limitafunkciefvnevlastnombode\pm \inftysarovnáb)aoznačujeme\lim\limits_{x\rightarrow \pm \infty} f(x) = b,ak:a)BodajehromadnýmbodommnožinyD(f).b)Prevšetky\displaystyle{\{ x_n \}_{n=1}^{\infty}} \subset D(f), x_n\neq ataké,že\displaystyle{\{ x_n \}_{n=1}^{\infty}} \longmapsto \pm \infty,platí\displaystyle{\{f( x_n) \}_{n=1}^{\infty}} \longmapsto b(t.j.akx_n\in D(f), x_n \neq a, \lim\limits_{n\rightarrow \infty} x_n = \pm \infty,potom\lim\limits_{n\rightarrow \infty} f(x_n) = b$).
+
|Definition=Funkcia y=f(x) má v bode a=± limitu rovnajúcu sa \\ bR (limita funkcie f v nevlastnom bode ± sa rovná b) a označujeme limx±f(x)=b, ak: \\ a) Bod a je hromadným bodom množiny D(f). \\ b) Pre všetky {xn}n=1D(f),xna také, že  {xn}n=1±, platí {f(xn)}n=1b (t. j. ak xnD(f),xna,limnxn=±, potom limnf(xn)=b).
 
|Localized definitions=
 
|Localized definitions=
 
|Field=matematika
 
|Field=matematika

Aktuálna revízia z 13:32, 19. január 2023

Oblasť: matematika
Definícia: Funkcia y=f(x) má v bode a=± limitu rovnajúcu sa \\ bR (limita funkcie f v nevlastnom bode ± sa rovná b) a označujeme limx±f(x)=b, ak: \\ a) Bod a je hromadným bodom množiny D(f). \\ b) Pre všetky {xn}n=1D(f),xna také, že {xn}n=1±, platí {f(xn)}n=1b (t. j. ak xnD(f),xna,limnxn=±, potom limnf(xn)=b).
Zdroj: Blaško, R: Matematická analýza 1. Žilina: EDIS 2009

Príbuzné termíny: hromadný bod, limita funkcie v bode, limita funkcie vo vlastnom bode, vlastná limita
Cudzojazyčný ekvivalent: limit of a function at a infinite point