Termín:derivácia vektorovej funkcie: Rozdiel medzi revíziami
Z STD
(Zmena kluca Field vo fyzike) |
|||
Riadok 2: | Riadok 2: | ||
|Name=derivácia vektorovej funkcie | |Name=derivácia vektorovej funkcie | ||
|Definition=derivácia, ktorá zohľadňuje vektorový charakter funkcie $A$ | |Definition=derivácia, ktorá zohľadňuje vektorový charakter funkcie $A$ | ||
− | |Field= | + | |Field=fyzikálne vedy |
|Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | |Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | ||
|Acceptability=Odporúčaný | |Acceptability=Odporúčaný |
Verzia zo dňa a času 13:21, 22. jún 2017
Odporúčaný termín [?]
Oblasť: | fyzikálne vedy |
Definícia: | derivácia, ktorá zohľadňuje vektorový charakter funkcie $A$ |
Zdroj: | Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 |
Poznámka: | Výsledkom derivácie funkcie A podľa času $t$ je vektorová funkcia $B$ definovaná vzťahom $B = \lim_{t_2\to t_1} \frac{A_2 - A_1}{t_2 - t_1}$, kde $A_1$ a $A_2$ predstavujú funkciu $A$ v časových okamihoch $t_1$ resp. $t_2$. Čitateľ zlomku udáva smer vektora $B$, celý zlomok vyjadruje zmenu vektorovej funkcie $A$ pripadajúcu na jednotku času. Pri derivácii podľa priestorových súradníc sa rozlišujú gradient, divergencia a rotácia. |