plošný integrál vektorovej funkcie

Z STD
Verzia z 13:42, 12. jún 2023, ktorú vytvoril Kristina.bobekova (diskusia | príspevky)$7

(rozdiel) ← Staršia verzia | Approved revision (rozdiel) | Aktuálna úprava (rozdiel) | Novšia verzia → (rozdiel)
Prejsť na: navigácia, hľadanie

Odporúčaný termín [?]

Oblasť: fyzikálne vedy
Definícia: najčastejšie integrál typu SAdS
Zdroj: Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009.

Synonymum: tok vektora cez plochu
Príbuzné termíny: magnetický tok
Poznámka: V plošnom integrále vektorovej funkcie vystupuje skalárny súčin vektorovej funkcie A s diferenciálom dS, ktorý ako vektor je kolmý na príslušnú elementárnu plôšku a jeho veľkosť predstavuje jej plošný obsah. Ide o tok vektora A cez plochu S. V karteziánskej súradnicovej sústave sa diferenciál plochy dá vyjadriť ako dS=i dydz+j dzdx+k dxdy, a skalárny súčin AdS v tvare: AdS=Ax dydz+Ay dzdx+Az dxdy.