plošný integrál vektorovej funkcie

Z STD
Verzia z 12:42, 12. jún 2023, ktorú vytvoril Kristina.bobekova (diskusia | príspevky)$7

(rozdiel) ← Staršia verzia | Approved revision (rozdiel) | Aktuálna úprava (rozdiel) | Novšia verzia → (rozdiel)
Prejsť na: navigácia, hľadanie

Odporúčaný termín [?]

Oblasť: fyzikálne vedy
Definícia: najčastejšie integrál typu $\iint_{S} A \cdot \mathrm{d}S$
Zdroj: Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009.

Synonymum: tok vektora cez plochu
Príbuzné termíny: magnetický tok
Poznámka: V plošnom integrále vektorovej funkcie vystupuje skalárny súčin vektorovej funkcie $A$ s diferenciálom $\mathrm{d}S$, ktorý ako vektor je kolmý na príslušnú elementárnu plôšku a jeho veľkosť predstavuje jej plošný obsah. Ide o tok vektora $A$ cez plochu $S$. V karteziánskej súradnicovej sústave sa diferenciál plochy dá vyjadriť ako $\mathrm{d}S = i~\mathrm{d} y \mathrm{d} z + j~\mathrm{d} z \mathrm{d} x + k~\mathrm{d} x \mathrm{d} y$, a skalárny súčin $A \cdot \mathrm{d} S$ v tvare: $A \cdot \mathrm{d} S = A_x~\mathrm{d} y \mathrm{d} z + A_y~\mathrm{d} z \mathrm{d} x + A_z~\mathrm{d} x \mathrm{d} y$.