aditivita integrálu

Z STD
Verzia z 12:36, 9. jún 2023, ktorú vytvoril JanaLevická (diskusia | príspevky)$7

(rozdiel) ← Staršia verzia | Approved revision (rozdiel) | Aktuálna úprava (rozdiel) | Novšia verzia → (rozdiel)
Prejsť na: navigácia, hľadanie

Odporúčaný termín [?]

Oblasť: matematika
Definícia: nech $a_0 < a_1 < \dots < a_m.$, potom funkcia $f$ je integrovateľná na intervale $\langle a_0, a_m\rangle$ práve vtedy, ak je integrovateľná na každom intervale $\langle a_{i-1}, a_i\rangle \; (i = 1, \dots , m).$, pritom platí $$\displaystyle{ \int\limits_{a_0}^{a_m} f(x)\ dx = \sum_{i=1}^{m}\int\limits_{a_{i-1} }^{a_i} f(x)\ dx}$$
Zdroj: Feťková, J. – Olach, R. – Špániková, E. – Wisztová, E.: Integrálny počet a jeho aplikácie. Žilina: EDIS 2000.

Príbuzné termíny: integrovateľná funkcia, určitý integrál, uzavretý interval
Cudzojazyčný ekvivalent: en: additivity of integral
Poznámka: Aditivita integrálu sa používa pri výpočte integrálov funkcií, ktoré sú dané rôznymi vzorcami v rôznych intervaloch.