Termín:rotácia vektorovej funkcie: Rozdiel medzi revíziami
Z STD
(Zmena kluca Field vo fyzike) |
|||
Riadok 2: | Riadok 2: | ||
|Name=rotácia vektorovej funkcie | |Name=rotácia vektorovej funkcie | ||
|Definition=operácia, ktorej výsledkom je vektorová funkcia definovaná vzťahom $B(x, y, z) = \mathrm{rot} A(x, y, z) = \nabla \times A (x, y, z)$ | |Definition=operácia, ktorej výsledkom je vektorová funkcia definovaná vzťahom $B(x, y, z) = \mathrm{rot} A(x, y, z) = \nabla \times A (x, y, z)$ | ||
− | |Field= | + | |Field=fyzikálne vedy |
|Related terms=nabla operátor, vektorová funkcia | |Related terms=nabla operátor, vektorová funkcia | ||
|Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | |Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 |
Verzia zo dňa a času 13:21, 22. jún 2017
Odporúčaný termín [?]
Oblasť: | fyzikálne vedy |
Definícia: | operácia, ktorej výsledkom je vektorová funkcia definovaná vzťahom $B(x, y, z) = \mathrm{rot} A(x, y, z) = \nabla \times A (x, y, z)$ |
Zdroj: | Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 |
Príbuzné termíny: | nabla operátor, vektorová funkcia |
Poznámka: | Rotácia vektorovej funkcie je aplikáciou nabla operátora na vektorovú funkciu prostredníctvom vektorového súčinu. |