Termín:integrál ako funkcia hornej hranice: Rozdiel medzi revíziami

Z STD
Prejsť na: navigácia, hľadanie
 
d (importovaná 1 revízia: Import termínov matematiky bez veľkých rovníc (3))
 
(Žiaden rozdiel)

Aktuálna revízia z 11:17, 18. január 2023

Oblasť: matematika
Definícia: Ak je $a > b,$ potom definujeme $$ \int\limits_{a}^{b} f(x)\ dx = -\int\limits_{b}^{a} f(x)\ dx .$$ Ďalej definujeme $\int\limits_{a}^{a} f(x)\ dx = 0$ pre ľubovoľnú funkciu $f.$ Nech funkcia $f$ je integrovateľná funkcia na intervale $\langle a, b \rangle,\; a < b.$ Zvoľme v $\langle a, b \rangle$ pevne bod $\alpha .$ Potom pre každý bod $x \in \langle a, b \rangle$ existuje integrál $\int\limits_{\alpha }^{x} f(t)\ dt$ a tento integrál je pre dané $x$ jednoznačne určené číslo. Potom môžeme definovať funkciu $\varPhi \in \langle a, b \rangle \rightarrow R$ vzťahom $$\varPhi (x) = \int\limits_{\alpha }^{x} f(t)\ dt, x \in \langle a, b \rangle.$$
Zdroj: Feťková, J; Olach, R; Špániková, E; Wisztová, E: Integrálny počet a jeho aplikácie. Žilina: EDIS 2000

Príbuzné termíny: integrál ako funkcia dolnej hranice, integrovateľná funkcia, určitý integrál, uzavretý interval
Cudzojazyčný ekvivalent: integral as an upper bound function
Poznámka: Podľa definície integrálu ako funkcie dolnej hranice platí $\varPhi (x) = -\varPhi _1(x)$.