Termín:derivácia v bode sprava: Rozdiel medzi revíziami

Z STD
Prejsť na: navigácia, hľadanie
d (importovaná 1 revízia: Import termínov matematiky bez veľkých rovníc (1))
d
 
Riadok 1: Riadok 1:
 
{{Term
 
{{Term
 
|Name=derivácia v bode sprava
 
|Name=derivácia v bode sprava
|Definition=Funkcia $f$ má v bode $x_0$ deriváciu sprava $f_{+}^{'}(x_0)$, ak existuje limita: $$\displaystyle{f_{+}^{'}(x_0) = \lim\limits_{x\rightarrow x_0^{+}} {\frac{f(x)-f(x_0)}{x-x_0}} = \lim\limits_{h\rightarrow 0^{+}} {\frac{f(x_0+h)-f(x_0)}{h}}}$$
+
|Definition=Funkcia $f$ má v bode $x_0$ deriváciu sprava $f_{+}^{'}(x_0)$, ak existuje limita: $$\displaystyle{f_{+}^{'}(x_0) = \lim\limits_{x\rightarrow x_0^+} {\frac{f(x)-f(x_0)}{x-x_0} } = \lim\limits_{h\rightarrow 0^{+} } {\frac{f(x_0+h)-f(x_0)}{h} } }$$
 
|Localized definitions=
 
|Localized definitions=
 
|Field=matematika
 
|Field=matematika

Aktuálna revízia z 09:50, 19. január 2023

Oblasť: matematika
Definícia: Funkcia $f$ má v bode $x_0$ deriváciu sprava $f_{+}^{'}(x_0)$, ak existuje limita: $$\displaystyle{f_{+}^{'}(x_0) = \lim\limits_{x\rightarrow x_0^+} {\frac{f(x)-f(x_0)}{x-x_0} } = \lim\limits_{h\rightarrow 0^{+} } {\frac{f(x_0+h)-f(x_0)}{h} } }$$
Zdroj: Blaško, R: Matematická analýza 1. Žilina: EDIS 2009

Príbuzné termíny: derivácia funkcie v bode, derivácia funkcie v bode zľava
Cudzojazyčný ekvivalent: right derivative of a function at a point
Poznámka: $h = x - x_0$