Termín:gradient skalárnej funkcie: Rozdiel medzi revíziami
Z STD
(Oprava "Cagegory") |
|||
Riadok 3: | Riadok 3: | ||
|Definition=vektorová funkcia $A(x, y, z)$ priestorových premenných, definovaná vzťahom $$A(x, y, z) = \frac{\partial S}{\partial x} i + \frac{\partial S}{\partial y} j + \frac{\partial S}{\partial z} k = \nabla S$$, kde $S(x, y, z)$ je skalárna funkcia, $i$, $j$, $k$ jednotkové vektory charakterizujúce smer súradnicových osí a $\nabla$ je nabla operátor. | |Definition=vektorová funkcia $A(x, y, z)$ priestorových premenných, definovaná vzťahom $$A(x, y, z) = \frac{\partial S}{\partial x} i + \frac{\partial S}{\partial y} j + \frac{\partial S}{\partial z} k = \nabla S$$, kde $S(x, y, z)$ je skalárna funkcia, $i$, $j$, $k$ jednotkové vektory charakterizujúce smer súradnicových osí a $\nabla$ je nabla operátor. | ||
|Field=fyzikálne vedy | |Field=fyzikálne vedy | ||
− | |Related terms=vektorová funkcia, skalárna funkcia | + | |Related terms=vektorová funkcia, skalárna funkcia, nabla operátor |
− | |Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | + | |Bibliography=Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009. |
|Acceptability=Odporúčaný | |Acceptability=Odporúčaný | ||
}} | }} | ||
[[Category:Fyzika]] | [[Category:Fyzika]] | ||
[[Category:Vektory]] | [[Category:Vektory]] |
Verzia zo dňa a času 17:06, 26. máj 2023
Odporúčaný termín [?]
Oblasť: | fyzikálne vedy |
Definícia: | vektorová funkcia $A(x, y, z)$ priestorových premenných, definovaná vzťahom $$A(x, y, z) = \frac{\partial S}{\partial x} i + \frac{\partial S}{\partial y} j + \frac{\partial S}{\partial z} k = \nabla S$$, kde $S(x, y, z)$ je skalárna funkcia, $i$, $j$, $k$ jednotkové vektory charakterizujúce smer súradnicových osí a $\nabla$ je nabla operátor. |
Zdroj: | Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009. |
Príbuzné termíny: | vektorová funkcia, skalárna funkcia, nabla operátor |