Termín:plošný integrál vektorovej funkcie: Rozdiel medzi revíziami
Z STD
(Zmena kluca Field vo fyzike) |
|||
Riadok 2: | Riadok 2: | ||
|Name=plošný integrál vektorovej funkcie | |Name=plošný integrál vektorovej funkcie | ||
|Definition=najčastejšie integrál typu $\iint_{S} A \cdot \mathrm{d}S$ | |Definition=najčastejšie integrál typu $\iint_{S} A \cdot \mathrm{d}S$ | ||
− | |Field= | + | |Field=fyzikálne vedy |
|Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | |Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | ||
|Acceptability=Odporúčaný | |Acceptability=Odporúčaný |
Verzia zo dňa a času 13:21, 22. jún 2017
Odporúčaný termín [?]
Oblasť: | fyzikálne vedy |
Definícia: | najčastejšie integrál typu $\iint_{S} A \cdot \mathrm{d}S$ |
Zdroj: | Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 |
Poznámka: | V plošnom integrále vektorovej funkcie vystupuje skalárny súčin vektorovej funkcie $A$ s diferenciálom $\mathrm{d}S$, ktorý ako vektor je kolmý na príslušnú elementárnu plôšku a jeho veľkosť predstavuje jej plošný obsah. Ide o tok vektora $A$ cez plochu $S$. V karteziánskej súradnicovej sústave sa diferenciál plochy dá vyjadriť ako $\mathrm{d}S = i~\mathrm{d} y \mathrm{d} z + j~\mathrm{d} z \mathrm{d} x + k~\mathrm{d} x \mathrm{d} y$, a skalárny súčin $A \cdot \mathrm{d} S$ v tvare: $A \cdot \mathrm{d} S = A_x~\mathrm{d} y \mathrm{d} z + A_y~\mathrm{d} z \mathrm{d} x + A_z~\mathrm{d} x \mathrm{d} y$. |