Termín:zložky vektora: Rozdiel medzi revíziami
Z STD
(Oprava "Cagegory") |
|||
Riadok 4: | Riadok 4: | ||
|Field=fyzikálne vedy | |Field=fyzikálne vedy | ||
|Related terms=vektorová veličina | |Related terms=vektorová veličina | ||
− | |Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | + | |Bibliography=Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009. |
|Acceptability=Odporúčaný | |Acceptability=Odporúčaný | ||
|Comment=V trojrozmernom priestore, v karteziánskej sústave, má vektor $a$ zložky $a_x, a_y, a_z$, vyjadrené ako skalárne násobky jednotkových vektorov príslušnými súradnicami vektora: $a_x = a_x i,~~a_y = a_y j,~~a_z = a_z k$. | |Comment=V trojrozmernom priestore, v karteziánskej sústave, má vektor $a$ zložky $a_x, a_y, a_z$, vyjadrené ako skalárne násobky jednotkových vektorov príslušnými súradnicami vektora: $a_x = a_x i,~~a_y = a_y j,~~a_z = a_z k$. |
Aktuálna revízia z 18:44, 26. máj 2023
Odporúčaný termín [?]
Oblasť: | fyzikálne vedy |
Definícia: | vektory, ktoré sú rovnobežné so súradnicovými osami karteziánskej, prípadne inej súradnicovej sústavy, a ktorých sčítaním dostaneme pôvodný vektor |
Zdroj: | Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009. |
Príbuzné termíny: | vektorová veličina |
Poznámka: | V trojrozmernom priestore, v karteziánskej sústave, má vektor $a$ zložky $a_x, a_y, a_z$, vyjadrené ako skalárne násobky jednotkových vektorov príslušnými súradnicami vektora: $a_x = a_x i,~~a_y = a_y j,~~a_z = a_z k$. |