Termín:zložky vektora: Rozdiel medzi revíziami
Z STD
(3 medziľahlé úpravy od jedného ďalšieho používateľa nie sú zobrazené) | |||
Riadok 2: | Riadok 2: | ||
|Name=zložky vektora | |Name=zložky vektora | ||
|Definition=vektory, ktoré sú rovnobežné so súradnicovými osami karteziánskej, prípadne inej súradnicovej sústavy, a ktorých sčítaním dostaneme pôvodný vektor | |Definition=vektory, ktoré sú rovnobežné so súradnicovými osami karteziánskej, prípadne inej súradnicovej sústavy, a ktorých sčítaním dostaneme pôvodný vektor | ||
− | |Field= | + | |Field=fyzikálne vedy |
|Related terms=vektorová veličina | |Related terms=vektorová veličina | ||
− | |Bibliography=Červeň, I: Príručka fyzikálnych pojmov a vzťahov. Bratislava : STU 2009 | + | |Bibliography=Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009. |
|Acceptability=Odporúčaný | |Acceptability=Odporúčaný | ||
|Comment=V trojrozmernom priestore, v karteziánskej sústave, má vektor $a$ zložky $a_x, a_y, a_z$, vyjadrené ako skalárne násobky jednotkových vektorov príslušnými súradnicami vektora: $a_x = a_x i,~~a_y = a_y j,~~a_z = a_z k$. | |Comment=V trojrozmernom priestore, v karteziánskej sústave, má vektor $a$ zložky $a_x, a_y, a_z$, vyjadrené ako skalárne násobky jednotkových vektorov príslušnými súradnicami vektora: $a_x = a_x i,~~a_y = a_y j,~~a_z = a_z k$. | ||
}} | }} | ||
[[Category:Fyzika]] | [[Category:Fyzika]] | ||
+ | [[Category:Vektory]] |
Aktuálna revízia z 18:44, 26. máj 2023
Odporúčaný termín [?]
Oblasť: | fyzikálne vedy |
Definícia: | vektory, ktoré sú rovnobežné so súradnicovými osami karteziánskej, prípadne inej súradnicovej sústavy, a ktorých sčítaním dostaneme pôvodný vektor |
Zdroj: | Červeň, I.: Príručka fyzikálnych pojmov a vzťahov. Bratislava: STU 2009. |
Príbuzné termíny: | vektorová veličina |
Poznámka: | V trojrozmernom priestore, v karteziánskej sústave, má vektor $a$ zložky $a_x, a_y, a_z$, vyjadrené ako skalárne násobky jednotkových vektorov príslušnými súradnicami vektora: $a_x = a_x i,~~a_y = a_y j,~~a_z = a_z k$. |